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The nature of glass phases of liquid crystals in random porous media depends on the effective disorder
strength. We study how the disorder strength depends on the density of the porous media and demonstrate that
it can increase as the density decreases. We also show that the interaction of the liquid crystal with random
porous media can destroy long-range order inside the pores.
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In many natural and technological systems, liquids are
confined in random porous media. Two examples are water
in soil and oil in porous rocks. Liquid flow in porous media
involves complicated dynamical phenomena and this moti-
vates significant research efforts. The physics becomes even
richer when a porous matrix confines a liquid crystal. Inter-
action with random media affects not only dynamic but also
static properties of liquid crystals. Long-range order in
liquid-crystalline states is unstable in the presence of even
arbitrarily weak quenched disorder[1,2] and glass phases
emerge instead[3]. In particular, slow glassy dynamics was
reported in[4]. Another disorder effect is the suppression of
the isotropic-nematic[5] and nematic-smectic[6] phase tran-
sitions. Properties of the glass states depend on the relative
strength of disorder and elastic forces. When disorder is
strong, liquid crystals are expected to have a finite correla-
tion length[3], while in the weakly disordered case, quasi-
long-range-ordered glass phases can emerge[3,7,8]. One
would naively expect that the effective disorder is weaker in
low-density random porous media such as aerosil gels[9],
i.e., when the pore size is large. However, recent experiments
found no signs of ordering in a low-density aerosil system
[11], while liquid-crystalline order was detected in high-
density bulk fractal silica gels[12]. The results of light-
scattering experiments with nematics in dilute aerosils[10]
are consistent with a faster decay of correlation functions at
large distances in lower-density aerosil gels.

In this paper we examine how the effective disorder
strength at scales greater than the pore size depends on the
pore size, and show that this dependence has a nontrivial
character. In particular, the disorder strength cangrow as the
pore size increases. There are two reasons for this. First, the
effective disorder strength is the ratio of the typical random
and elastic energies. Since the latter grows slowly as a func-
tion of the pore size, the former can dominate for low aerogel
densities. Second, there are long-range correlations in the
structure of random porous media and these correlations can
enhance the effective disorder. We also consider the physics
at scales smaller than the pore size. At such scales, random
media cannot be viewed as uniform and the fractal structure
affects the confined liquid crystal. We show that the interac-
tion of the liquid crystal with the random pore surface can
destroy long-range order in the bulk of the pore and calculate
the order-parameter correlation function for a simple model
of random fractal porous media.

The organization of this article is as follows. First, we
address the effective disorder strength in systems of continu-

ous symmetry in porous media in the presence of random
field and random anisotropy disorder, the latter being rel-
evant for nematic liquid crystals. We also consider the “di-
rected random-field” universality class which can be realized
in random gels based on amino acids[13]. Second, we in-
vestigate the problem of a liquid crystal interacting with a
random Sierpinsky gasket surface. This is the simplest model
of what might occur inside a pore. We find scaling behavior
for the correlation functions in the pore.

Most of our results are valid for a general system with a
continuous symmetry order parameter. We focus on disor-
dered nematics and the random-fieldXY model [14,15], the
latter being the simplest model with a continuous symmetry
group. These models represent two different types of
quenched disorder: random anisotropy and random field. In
nematics, antiparallel orientations of the director correspond
to the same physical state and hence to the same disorder
energy, i.e., the disorder is random anisotropy. Random-field
disorder is possible in ferroelectric liquid crystals where the
energy is different for antiparallel dipole moments. We will
show that the role of geometric correlations is stronger in the
random anisotropy case.

Nematics can be described by the Hamiltonian[3]

Hn =E d3rH1

2
hK1f= ·nsrdg2 + K2fnsrd ·=3nsrdg2

+ K3fnsrd 3=3 nsrdg2j − o
a,b=x,y,z

habsrdnasrdnbsrdJ ,

s1d

whereKi are the Frank moduli, the unit vectorn is the di-
rector, and the random tensorhabsrd describes the interaction
with the porous medium. We assume that the preferred ori-
entation of the nematic molecules near the surface of the
pores is parallel to the surface. We also assume that the nem-
atic order parameter is relatively large in the pores, so that it
is appropriate to use the director description, rather than the
more general tensor nematic order parameter.

The random-fieldXY model has the following Hamil-
tonian:

Hxy =E d3rH J

2 o
a=x,y,z

f]afsrdg2 − h1srdcosfsrd

− h2srdsinfsrdJ , s2d

wherefsrd is the polar angle of the spin, andh1srd andh2srd
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are thex andy components of the random field, respectively,
each with zero average. Random-field disorder is possible in
ferroelectric liquid crystals. Since ferroelectric liquid crystals
have other degrees of freedom in addition to their dipole
moment, the random-fieldXY model does not provide a full
realistic description of ferroelectric liquid crystals. However,
this simple random-field model does provide useful insight.
The model(2) is also relevant to discotics and smectics con-
fined in stretched aerogels[8] but only at length scales
greater than the pore size.

The models Eqs.(1) and(2) can be used for length scales
both greater and smaller than the pore size. However, the
probability distribution of the random field is independent of
the coordinates only in the former case. For short length
scales the structure of the porous matrix must be taken into
account. The effective model at length scales greater than the
pore size must be derived from the short length scale model.
Such a derivation is difficult and only order-of-magnitude
estimates for the model parameters have been obtained by
fitting experimental data[16]. We focus on the disorder
strength dependence on the aerogel density. The disorder
strength in the long length scale model determines the type
of ordering at long length scales. For weak quenched disor-
der, quasi-long-range order is expected for nematics and the
random-fieldXY model. The ordering disappears for strong
quenched disorder.

Let a be the microscopic cutoff scale for the short length
scale model,j the pore size, anddf the fractal dimension
of the aerogel. An Imry-Ma-type estimate[1] shows that
the typical elastic energy at the scalej is Jsjd
,Jsadsj /add/ sj /ad2=Jsadsj /add−2, for a d-dimensional sys-
tem and the disorder energyhsjd,hsadÎsj /addf. The effec-
tive disorder strength at the scalej is the ratio of the typical
disorder and elastic energies,

hrsjd = hsjdJsad/Jsjd , j df/2−d+2. s3d

This effective disorder strengthhr enters the random contri-
bution to the Hamiltonian of the long length scale model, if
one keeps the same elastic constant as in the short length
scale model. We see that the disorder strength in the long
length scale model grows as a function of the pore size for
df .2d−4 (destroying long-range order in this case), while
the aerogel densityr,jdf−d decreases for all fractal objects.
Thus, ind=3, the disorder strength grows as a function ofj
for all df .2, and we note that this condition is satisfied in
recent experiments on highly porous gels[10,12,17]. Thus,
increasing the pore size can lead to anincreasein the effec-
tive disorder strength with an accompanying decrease in the
aerogel density. In particular, if the disorder is strong for a
smaller pore size it is also strong for a greater pore size. A
simple way to understand the critical fractal dimensiondf
=2d−4=2 for d=3 is based on the following observation:
The effective disorder strength is infinite for a system of
disconnected pores and the fractal dimension of the walls of
disconnected pores is always 2 or greater.

The above estimate neglects correlations of the random
field h at different points. This approximation is valid for the
random-field disorder. For the nematic problem Eq.(1), geo-
metric correlations in random media result in correlations of

the random anisotropy since nematic molecules tend to be
parallel to the pore surface. This affects the effective disorder
at the scalej. The existence of this effect becomes obvious
when the porous matrix is not random at length scales
shorter thanj. Then, the random anisotropy is the same at all
points of the random medium inside the pore. Hence,hsjd
,jdf andhr ,jdf −1, wheredf is the fractal dimension of the
porous medium. The effective disorder strength then grows
as a function ofj for all df .1. A similar effect is possible
for a random fractal. Indeed, asdf →1 we expect that ran-
dom and nonrandom fractals should exhibit similar proper-
ties for the case of random anisotropy disorder. For example,
consider a random fractal whose construction is based on
fractional Brownian motion[18]. The coordinates of theNth
segment of the random fractal are given by the equation[18]

BHsNd = o
n=1

N

DBsndsN − n + 1dH−1/2, s4d

where the Hurst exponentH is related to the fractal dimen-
sion bydf =1/H [18], andDBsnd is a random Gaussian vec-
tor with n an integer parameter. A Hurst exponent of 1/2
corresponds to ordinary Brownian motion. We imagine that
this fractional Brownian walk forms the backbone of a tube-
like fractal object, and the nematic molecules are anchored
along the surface of the tube. To obtain a tractable model, we
assume that the surface area of thenth segment of the tube is
proportional to fDBHsndg2, where DBHsnd=BHsnd−BHsn
−1d. The average surface area of a segment is finite and
hence the structure is well defined forH,1. The total
strength of the random anisotropy associated with each seg-
ment habsnd,DBa

HDBb
H is proportional to its area. An esti-

mate of the total disorder strength in a pore of linear dimen-
sion j, enclosing a fractal consisting ofnmax segments with
the z axis chosen to lie along the average director is then
given by

hsjd = FXo
n

hxysndC2G1/2

, Fo
n,m

DBx
HsndDBy

HsndDBx
HsmdDBy

HsmdG1/2

= Fo
n,m

sDBx
HsndDBx

Hsmdd2G1/2
, Fnmaxo

n

sn2H−2d2G1/2

, nmax
g , jgdf , s5d

where

g = H1/2, H ø 3/4

2H − 1 = 2/df − 1, H ù 3/4
J s6d

and the bar denotes an average over all realizations of the
random fractal. Thus, asdf →1 (i.e., H,3/4), the renormal-
ized disorder strength scales withj in a manner different
than Eq.(3),

hrsjd , j1−df . s7d

One can see that the effective disorder decreases most rap-
idly as the function of the pore size fordf =4/3.Even in this
casehr ,j−1/3 and hence to decrease the disorder strength by
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one order of magnitude one needs to increase the pore size
by several orders of magnitude. Atdf =1, Eq.(7) predicts no
dependence of the renormalized disorder strength on the pore
size. In the presence of any preferred macroscopic orienta-
tion for the segments of the random surface of the pore, the
effective random anisotropy enhancement is stronger than
Eq. (7). We do not expect the geometric correlations to play
an important role in systems with random fields which can
be randomly oriented along one of the two directions parallel
to the segment axis.

Geometric correlations are, however, important for the
“directed random-field” universality class. Let a random ma-
trix consist of random polymer chains made of identical
monomers. We assume that the monomers are asymmetric
with nonequivalent endsA andB. TheA end always links the
B end of the next monomer in the chain. The pore diameter
equals the chain size. Consider a ferroelectric smecticC*

confined in such a random medium. Its dipole moment
couples linearly to the local random field which is parallel to
the network monomers[19] and is directed from theirA ends
to theirB ends. SmecticsC* are chiral and form helical struc-
tures[20]. However, the typical period of the helical struc-
ture is large and at smaller scales the liquid crystal can be
considered as a uniform ferroelectric. Then the standard
Imry-Ma argument can be used.

For any fractal dimensiondf, the vector sum of all random
fields associated with the polymer of lengthj1/df is hsjd,j,
wherej is the typical distance between branching points of
the network. Hence, the disorder strength in the long length
scale model with ultraviolet cutoffj is scale independent:
hrsjd,hsjd /j=const.

What happens inside a pore? We need to study the limit
j→`. Let us first consider the exactly solvable Larkin
model [2] of a system with continuous symmetry,

HL =E d3rh 1
2s¹fd2 − hsrdfsrdj , s8d

wherehsrd is a random field which is nonzero on the random
fractal only, and its probability distribution is characterized
by hsr1dhsr2d=Ddsr1−r2d. We want to calculate the correla-
tion functionGsr1,r2d=ffsr1d−fsr2dg2. Let s1 ands2 denote
the distances from the pointsr1 andr2 to the random fractal.
We assume thatR= ur1−r2u.maxss1,s2d. At low tempera-
tures, the equilibrium configuration of the fieldf can
be found by minimizing the Hamiltonian(8): fsrd
=ed3r8hsr8d /4pur −r8u. Hence,

G , DE ddfrhf1/sur1 − r udg − f1/sur2 − r udgj2, s9d

where the integration extends over the random fractal. The
result depends on the fractal dimension: fordf ,2,G
,s1

df −2+s2
df −2; for df =2, G, log R/s1+ log R/s2; for

df .2, G,Rdf −2. As R→`, the correlation function
diverges for df ù2. In terms of the “physical”
order parameter n=scosf ,sinfd, the correlation
function limR→`knsr1d ·nsr2dl=limR→`kcosffsr1d−fsr2dgl
=limR→` exps−G/2d→0. Hence, for suchdf, long-range or-
der is destroyed inside the pore.

We now consider the more realistic and complicated non-
linear model (2). The random-fieldXY model cannot be
solved exactly and we will use a renormalization group(RG)
procedure. We will develop a doublee expansion ine=4
−d and e f =4−2d+df, whered is the dimensions of space
and df the random fractal dimensions. This choice of small
parameters is motivated by the fact thatd=4 is the critical
dimensions for the bulk random-fieldXY model[14,15], and
the Imry-Ma argument of Eq.(3) shows that the random
fractal destroys long-range order fordf ù2d−4 (cf. the Lar-
kin model, wheredf =2 is the critical fractal dimension for
d=3). In contrast to the Larkin model, the results depend on
the structure of the random fractal. We will limit our discus-
sion to a simple model based on the Sierpinsky gasket[21].
We divide the system of linear sizeL0 into blocks of size
L1=bL0, with b,1. We assume that disorder is present only
in a fraction p=sL0/L1ddf−d of the blocks. Then we divide
each block of sizeL1 into blocks of sizeL2=bL1. For each
block of sizeL1 that contains segments of the random fractal
we randomly choose a fractionp of subblocks of sizeL2,
such that only these subblocks contain segments of the ran-
dom fractal. We iterate this procedure and generate a random
fractal of dimensiondf. We implement the Wilson shell RG
by changing the cutoff scale fromLn to Ln−1 at each step, to
generate the one-loop RG equations. For the bulk random-
field XY model this problem was solved in Ref.[22]. In the
case when disorder was present on a two-dimensional sur-
face only, the problem was studied in Ref.[23]. We will thus
only briefly discuss the RG procedure which is similar to
Refs.[3,15,22,23].

Due to the periodicity of the Hamiltonian there is no
renormalization of the order parameter. There also is no
renormalization[22] of the elastic term in(2). Hence, the
scaling dimension of the temperature[22] is 2−e. As for
disorder, we know that all random contributions of the form
h1

skdcoskf+h2
skdsinkf are relevant operators in the vicinity of

the zero-temperature fixed point[14,15]. After replica aver-
aging this corresponds to the following structure of the rel-
evant terms in the Hamiltonian:

HR =E ddrFo
a

f¹fasrdg2

2T
− o

ab

Psrd
F„fasrd − fbsrd…

2T2 G ,
s10d

wherea,b are replica indices,F is the function describing
disorder at the ultraviolet cutoff scaleLn, andPsrd=1 in the
subblocks of sizeLn containing elements of the random frac-
tal, otherwise Psrd=0. Equation (10) is obtained by
averaging with respect to disorder inside the subblocks
of size Ln. We can average over the disorder distribution
inside the blocks of sizeLn−1 instead. This will include
averaging with respect to the distribution ofPsrd, which
is nonzero with probabilityp in different points of the blocks
of size Ln−1 which contain segments of our fractal. Instead
of expfeddroabPsrdF(fasrd−fbsrd) /2T2g in the replica
action we will get
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Prhs1 − pd + p expfP8srdoab
F„fasrd − fbsrd…/2T2gj

= expHE ddrP8srdfoab
pF„fasrd − fbsrd…/2T2

+ oabcd
sp − p2dF„fasrd − fbsrd…F„fcsrd

− fdsrd…/8T4 + …gJ ,

whereP8srd=1 if r belongs to a block of sizeLn−1 containing
segments of the fractal. We need to keep only the first term
oabpFffasrd−fbsrdg /2T2 in the integral in order to derive
the one-loop RG equation. Indeed, we will see thatF,e f at
the fixed point. We note thatsp2−pd→0 ase ,e f →0. Hence,
the second term in the square brackets isOse3,e f

3d and will
not contribute to the one-loop RG equation. The same is true
for the higher-order terms denoted by the dots. Thus, one can
directly repeat the standard derivation of the RG equations
for the bulk random-fieldXY model. The only modification
is related to the factorp multiplying F. This factor will
change the term linear inF in the one-loop RG equation. We
obtain

dFsfd/d ln L = e fFsfd + F9sfd2/2 − F9sfdF9s0d, s11d

where the primes refer to derivatives ofF with respect to its
argument and the factor 1/8p2 has been absorbed by
F. The fixed-point solution of the above equation is known
[3,22]. Due to the symmetry of the problem we need a peri-
odic solution with period 2p. At the interval 0,f,2p it is
given by the equation Fsfd=2p4e ff1/36−sf /2pd2s1
−f /2pd2g /9. This solution corresponds toe f .0. Otherwise
F→0. The temperature goes to zero at the fixed point.
We can now calculate the correlation function
G=ffsr1d−fsr2dg2=2eddquf2sqduf1−cosq·sr1−r2dg / s2pdd.
At each step of the RG procedure it is sufficient to use the
quadratic inf part of the renormalized replica Hamiltonian
to calculate the contribution corresponding to

1/Ln.q.1/Ln−1. If both pointsr1 and r2 are at a distance
s, ur1−r2u from the random fractal, we obtainG
=s2e fp

2/9dlnsur1−r2u /sd. The correlation function diverges
for largeur1−r2u, if e f .0. Hence, the random fractal destroys
long-range order in the pore fordf .2d−4, in agreement
with our Imry-Ma estimate above. The above result for the
correlation function is valid only if the bare disorder at the
microscopic cutoff scalea is weak since we did a perturba-
tive calculation.

We have calculated how the effective disorder in models
Eqs.(1) and (2) depends on the pore size. If the disorder is
weak in the long length scale model with cutoff lengthj then
we expect quasi-long-range order[3,14,15] in both models.
If the disorder is strong, then only short-range order is pos-
sible[3,14,15]. At strong disorder the perturbative RG analy-
sis is no longer valid and quasi-long-range order is impos-
sible. The condition of weak disorder means two things:(1)
the effective disorder at the pore size scalej is weak;(2) the
renormalized disorder is weak at long length scales, i.e.,e
=4−d is small. The critical value of the disorder strength is
nonuniversal and depends on microscopic details.

In conclusion, we have found the dependence of the ef-
fective disorder in random fractal media on the pore size and
the fractal dimensions. The dependence is nontrivial and the
effective disorder can grow as the density of the porous me-
dia decreases. Similar conclusions in the case of helium in
aerogels were reached by Falikov and Berker[24]. This sug-
gests that instead of changing the pore size, a more effective
way to control the disorder strength is to use mixtures of
nematics with other substances whose molecules could
“shield” the nematic from the random surface. This would
decrease the liquid-crystal interaction with the porous media.
We also showed that at certain conditions the porous media
can destroy long-range order inside a pore.
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