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Liquid crystals in random porous media: Disorder is stronger in low-density aerosils
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The nature of glass phases of liquid crystals in random porous media depends on the effective disorder
strength. We study how the disorder strength depends on the density of the porous media and demonstrate that
it can increase as the density decreases. We also show that the interaction of the liquid crystal with random
porous media can destroy long-range order inside the pores.
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In many natural and technological systems, liquids areous symmetry in porous media in the presence of random
confined in random porous media. Two examples are watdield and random anisotropy disorder, the latter being rel-
in soil and oil in porous rocks. Liquid flow in porous media evant for nematic liquid crystals. We also consider the “di-
involves complicated dynamical phenomena and this motirected random-field” universality class which can be realized
vates significant research efforts. The physics becomes evém random gels based on amino acids$]. Second, we in-
richer when a porous matrix confines a liquid crystal. Inter-vestigate the problem of a liquid crystal interacting with a
action with random media affects not only dynamic but alsorandom Sierpinsky gasket surface. This is the simplest model
static properties of liquid crystals. Long-range order inof what might occur inside a pore. We find scaling behavior
liquid-crystalline states is unstable in the presence of evefpr the correlation functions in the pore.
arbitrarily weak quenched disord¢t,?] and glass phases Most of our results are valid for a general system wit_h a
emerge insteaf3]. In particular, slow glassy dynamics was Continuous symmetry order parameter. We focus on disor-
reported in[4]. Another disorder effect is the suppression ofdered nematics and the random-fi{a model[14,13, the
the isotropic-nematigs] and nematic-smecti@] phase tran- latter being the simplest model with a continuous symmetry
sitions. Properties of the glass states depend on the relatif80UP- These models represent two different types of
strength of disorder and elastic forces. When disorder iguénched disorder: random anisotropy and random field. In
strong, liquid crystals are expected to have a finite correlal€matics, antiparallel orientations of the director correspond

tion length[3], while in the weakly disordered case, quasi-to the same physical state and hence to the same disorder

long-range-ordered glass phases can emé&geg. One energy, i.e., the disorder is random anisotropy. Random-field

Id naivel tthat the effective disorder ker i disorder is possible in ferroelectric liquid crystals where the
would naively expect that the efiective disorder 1S weaker Inenergy is different for antiparallel dipole moments. We will
low-density random porous media such as aerosil f#ls

; e , show that the role of geometric correlations is stronger in the
i.e., when the pore size is large. However, recent experiment$,nqom anisotropy case.

[11], while liquid-crystalline order was detected in high- 1
density bulk fractal silica gel$12]. The results of light- H :fdgr ZIKV - (0 + Kol n(r) -V Xn(r) 12
scattering experiments with nematics in dilute aerogily " 2{ il (] 2An(r) (0]

are consistent with a faster decay of correlation functions at

large distances in lower-density aerosil gels. +K NN XVX NN - > haﬁ(r)na(r)nﬁ(r)},
In this paper we examine how the effective disorder @ BXY,z

strength at scales greater than the pore size depends on the (1)

pore size, and show that this dependence has a nontrivial

character. In particular, the disorder strength geow as the ~ whereK; are the Frank moduli, the unit vectaris the di-

pore size increases. There are two reasons for this. First, tiector, and the random tendy,(r) describes the interaction
effective disorder strength is the ratio of the typical randomwith the porous medium. We assume that the preferred ori-
and elastic energies. Since the latter grows slowly as a fung@ntation of the nematic molecules near the surface of the
tion of the pore size, the former can dominate for low aerogePores is parallel to the surface. We also assume that the nem-
densities. Second, there are long-range correlations in thfic order parameter is relatively large in the pores, so that it
structure of random porous media and these correlations caf @Ppropriate to use the director description, rather than the
enhance the effective disorder. We also consider the physi¢80ré general tensor nematic order parameter. ,

at scales smaller than the pore size. At such scales, random '€ random-fieldXY model has the following Hamil-
media cannot be viewed as uniform and the fractal structurfMan:

affects the confined liquid crystal. We show that the interac- 3] J )
= | &) 5 2 [a(n)]* = hy(r)cos(n)

a=xy,z

tion of the liquid crystal with the random pore surface can

destroy long-range order in the bulk of the pore and calculate

the order-parameter correlation function for a simple model .

of random fractal porous media. —hy(n)sing(r) (2)
The organization of this article is as follows. First, we

address the effective disorder strength in systems of continuwhere ¢(r) is the polar angle of the spin, amhg(r) andhy(r)
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are thex andy components of the random field, respectively,the random anisotropy since nematic molecules tend to be
each with zero average. Random-field disorder is possible iparallel to the pore surface. This affects the effective disorder
ferroelectric liquid crystals. Since ferroelectric liquid crystals at the scalet. The existence of this effect becomes obvious
have other degrees of freedom in addition to their dipolewhen the porous matrix is not random at length scales
moment, the random-fieldY model does not provide a full shorter thart. Then, the random anisotropy is the same at all
realistic description of ferroelectric liquid crystals. However, points of the random medium inside the pore. Hergg)
this simple random-field model does provide useful insight~ & andh, ~ & =1, whered; is the fractal dimension of the
The model(2) is also relevant to discotics and smectics con-porous medium. The effective disorder strength then grows
fined in stretched aerogel8] but only at length scales as a function of¢ for all d;>1. A similar effect is possible
greater than the pore size. for a random fractal. Indeed, ak— 1 we expect that ran-
The models Eqg.1l) and(2) can be used for length scales dom and nonrandom fractals should exhibit similar proper-
both greater and smaller than the pore size. However, thges for the case of random anisotropy disorder. For example,
probability distribution of the random field is independent of consider a random fractal whose construction is based on
the coordinates only in the former case. For short lengttiractional Brownian motiori18]. The coordinates of thith
scales the structure of the porous matrix must be taken intsegment of the random fractal are given by the equdti@h
account. The effective model at length scales greater than the N
pore size must be derived from the short length scale model. HON — _ H-1/2
Such a derivation is difficult and only order-of-magnitude BY(N) = 2, AB(M(N-n+1) ' @
estimates for the model parameters have been obtained by
f|tt|ng experimenta| datq]_G] We focus on the disorder where the Hurst exponelh-t is related to the fractal dimen-
strength dependence on the aerogel density. The disordgton byds=1/H [18], andAB(n) is a random Gaussian vec-
strength in the long length scale model determines the typtor with n an integer parameter. A Hurst exponent of 1/2
of ordering at long length scales. For weak quenched disorcorresponds to ordinary Brownian motion. We imagine that
der, quasi-long-range order is expected for nematics and tH&is fractional Brownian walk forms the backbone of a tube-

random-fieldXY model. The ordering disappears for stronglike fractal object, and the nematic molecules are anchored
guenched disorder. along the surface of the tube. To obtain a tractable model, we

Let a be the microscopic cutoff scale for the short lengthassume that the surface area of titfe segment of the tube is
scale model& the pore size, and; the fractal dimension proportional to [AB™(n)]?, where AB"(n)=B"(n)-B"(n
of the aerogel. An Imry-Ma-type estimafd] shows that —1). The average surface area of a segment is finite and
the typical elastic energy at the scalé is J(&) hence the structure is well defined fét<1. The total
~J@)(¢la)d/ (£la)’=J(a)(£/a)92, for a d-dimensional sys- strength of the random anisotropy associated with each seg-
tem and the disorder energy¢) ~h(a)y/(£/a)%. The effec-  ment haﬁ(n)~AB§ABg is proportional to its area. An esti-
tive disorder strength at the scajés the ratio of the typical mate of the total disorder strength in a pore of linear dimen-

n=1

disorder and elastic energies, sion ¢, enclosing a fractal consisting of,,,, Segments with
de/o—de2 the z axis chosen to lie along the average director is then
he(£) =h(£)I(@)/I(§) ~ £ (3 given by

This effective disorder strength enters the random contri- he = (Sh 2|12
bution to the Hamiltonian of the long length scale model, if &)= ( - Xy(n))
one keeps the same elastic constant as in the short length

scale model. We see that the disorder strength in the long ~ [E AB?(n)AB;'(n)AB?(m)ABy(m)]1/2

length scale model grows as a function of the pore size for nm

d¢>2d-4 (destroying long-range order in this casehile o ChH o2 ool

the aerogel density~ &9 decreases for all fractal objects. = [E (AB, (M)ABy (m))z] ~ [nmaxz (n*H 2)2]
nm n

Thus, ind=3, the disorder strength grows as a functior¢ of
for all d;>2, and we note that this condition is satisfied in ~nY o~ & (5)
recent experiments on highly porous ggl®,12,17. Thus,
increasing the pore size can lead toiacreasein the effec-
tive disorder strength with an accompanying decrease in the 1/2, H=<3/4
aerogel density. In_ particular, if the disorder is strong .for a Y= SH-1=2M,-1, H=3/4
smaller pore size it is also strong for a greater pore size. A
simple way to understand the critical fractal dimensihn and the bar denotes an average over all realizations of the
=2d-4=2 for d=3 is based on the following observation: random fractal. Thus, ak— 1 (i.e., H<3/4), the renormal-
The effective disorder strength is infinite for a system ofized disorder strength scales within a manner different
disconnected pores and the fractal dimension of the walls dhan Eq.(3),
disconnected pores is always 2 or greater. hy(&) ~ & 7)

The above estimate neglects correlations of the random ' '
field h at different points. This approximation is valid for the One can see that the effective disorder decreases most rap-
random-field disorder. For the nematic problem Hg, geo- idly as the function of the pore size fdg=4/3. Even in this
metric correlations in random media result in correlations ofcaseh, ~ £*/2 and hence to decrease the disorder strength by

where

(6)
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one order of magnitude one needs to increase the pore size We now consider the more realistic and complicated non-

by several orders of magnitude. 8t=1, Eq.(7) predicts no linear model(2). The random-fieldXY model cannot be

dependence of the renormalized disorder strength on the posalved exactly and we will use a renormalization groR®)

size. In the presence of any preferred macroscopic orientgrocedure. We will develop a double expansion ine=4

tion for the segments of the random surface of the pore, thed and e;=4-2d+d;, whered is the dimensions of space

effective random anisotropy enhancement is stronger thaandd; the random fractal dimensions. This choice of small

Eqg. (7). We do not expect the geometric correlations to playparameters is motivated by the fact tltgt4 is the critical

an important role in systems with random fields which candimensions for the bulk random-fiellY model[14,15, and

be randomly oriented along one of the two directions parallethe Imry-Ma argument of Eq(3) shows that the random

to the segment axis. fractal destroys long-range order fdy=2d-4 (cf. the Lar-
Geometric correlations are, however, important for thekin model, whered;=2 is the critical fractal dimension for

“directed random-field” universality class. Let a random ma-d=3). In contrast to the Larkin model, the results depend on

trix consist of random polymer chains made of identicalthe structure of the random fractal. We will limit our discus-

monomers. We assume that the monomers are asymmetiston to a simple model based on the Sierpinsky gagkgt

with nonequivalent end& andB. The A end always links the We divide the system of linear sidg, into blocks of size

B end of the next monomer in the chain. The pore diametek,;=bL,, with b<1. We assume that disorder is present only

equals the chain size. Consider a ferroelectric smeglic in a fraction p=(Lo/L,)% ¢ of the blocks. Then we divide

confined in such a random medium. Its dipole momenteach block of size , into blocks of sizeL,=bL,. For each

couples linearly to the local random field which is parallel toblock of sizel; that contains segments of the random fractal

the network monomerd 9] and is directed from thei ends  we randomly choose a fractiom of subblocks of sizel,,

to theirB ends. Smectic€” are chiral and form helical struc- such that only these subblocks contain segments of the ran-

tures[20]. However, the typical period of the helical struc- dom fractal. We iterate this procedure and generate a random

ture is large and at smaller scales the liquid crystal can bé&actal of dimensiord;. We implement the Wilson shell RG

considered as a uniform ferroelectric. Then the standarédy changing the cutoff scale froiy, to L,,_; at each step, to

Imry-Ma argument can be used. generate the one-loop RG equations. For the bulk random-
For any fractal dimensiod;, the vector sum of all random field XY model this problem was solved in R¢22]. In the

fields associated with the polymer of lengftf'f is h(&) ~ ¢, case when disorder was present on a two-dimensional sur-

where¢ is the typical distance between branching points offace only, the problem was studied in RE£3]. We will thus

the network. Hence, the disorder strength in the long lengtlonly briefly discuss the RG procedure which is similar to

scale model with ultraviolet cutof is scale independent: Refs.[3,15,22,23.

h, (&) ~h(é)/&=const. Due to the periodicity of the Hamiltonian there is no
What happens inside a pore? We need to study the limitenormalization of the order parameter. There also is no

£—oo, Let us first consider the exactly solvable Larkin renormalization[22] of the elastic term in(2). Hence, the

model[2] of a system with continuous symmetry, scaling dimension of the temperatuf2?] is 2—e. As for
5 f1 ) disorder, we know that all random contributions of the form
H. = f d V{E(V ¢)° - h(r)¢(r)}, 8 h(lk)cosk¢+ h(zk)sin k¢ are relevant operators in the vicinity of

the zero-temperature fixed poifit4,15. After replica aver-

whereh(r) is a random field which is nonzero on the randomading this corresponds to the following structure of the rel-

fractal only, and its probability distribution is characterized €vant terms in the Hamiltonian:

by h(ry)h(r,)=Aé8(r;—r,). We want to calculate the correla-

tion functionG(ry,r,)=[&(r;)— ¢(r,) ]2 Lets, ands, denote | [V ¢a(r) F(¢al(r) = ¢u(r))
) . Hg= | d| > —2=-> P(r)—2—=>+

the distances from the pointg andr, to the random fractal. s 2T ab 2T?

We assume thaR=|r;—r,|>max(s;,s,). At low tempera-

tures, the equilibrium configuration of the fiel¢ can

be found by minimizing the Hamiltonian(8): ¢(r)

=[d% 'h(r")/4=|r-r'|. Hence,

(10

wherea,b are replica indicesk is the function describin
G~A f d*r{[2/(ry = r)]=[2A(r2 = 1T, ©  gisorder at the ulﬁ)raviolet cutoff scalg, andP(r)=1 in theg

subblocks of siz& , containing elements of the random frac-
where the integration extends over the random fractal. Theal, otherwise P(r)=0. Equation (10) is obtained by
result depends on the fractal dimension: fdf<2,G averaging with respect to disorder inside the subblocks
~si 245172 for  di=2, G~logR/s;+logR/s,; for  of size L, We can average over the disorder distribution
di>2, G~R%"2 As R—x, the correlation function inside the blocks of size.,_, instead. This will include
diverges for d;=2. In terms of the “physical” averaging with respect to the distribution &fr), which
order parameter n=(cos¢,sing), the correlation is nonzero with probability in different points of the blocks
function  limg_..(n(ry)-n(ry)=limg_.(cod p(r))—#(rp))])  of sizel,_; which contain segments of our fractal. Instead
=limg_... exp(-G/2) — 0. Hence, for sucli, long-range or- of exg [d¥ =, P(r)F(¢a(r)—dp(r))/2T?] in the replica
der is destroyed inside the pore. action we will get
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{2 -p) + pexg P'(N X, F(ga(r) - du(r)/2T}
= exq[ f d"rP’(r)[Eab PF(¢a(r) = ¢p(r))/2T?
+ 2 hea (P~ PPF(a(r) = (1) F(e(r)

— q(r)I8T* + ]}

whereP’(r)=1 if r belongs to a block of size,_; containing
segments of the fractal. We need to keep only the first ter
S aoPFLpa(r) — ép(r)]1/2T2 in the integral in order to derive
the one-loop RG equation. Indeed, we will see that ¢; at
the fixed point. We note th@p®-p) — 0 ase, &,— 0. Hence,
the second term in the square bracket@(r?’,ef’) and will
not contribute to the one-loop RG equation. The same is tru
for the higher-order terms denoted by the dots. Thus, one ¢
directly repeat the standard derivation of the RG equation
for the bulk random-fieldKY model. The only modification
is related to the factop multiplying F. This factor will
change the term linear iR in the one-loop RG equation. We

obtain
dF(¢)/dInL = &F(¢) + F"($)%2 -F"($)F"(0), (11)

where the primes refer to derivatives Bfwith respect to its
argument and the factor 148 has been absorbed by
F. The fixed-point solution of the above equation is known

m
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1/L,>q>1/L,4. If both pointsr, andr, are at a distance
s<|r;-r, from the random fractal, we obtainG
=(2¢m2/9)In(|r;—r,|/s). The correlation function diverges
for large|r,—r,|, if &>0. Hence, the random fractal destroys
long-range order in the pore fal;>2d-4, in agreement
with our Imry-Ma estimate above. The above result for the
correlation function is valid only if the bare disorder at the
microscopic cutoff scala is weak since we did a perturba-
tive calculation.

We have calculated how the effective disorder in models
Egs.(1) and(2) depends on the pore size. If the disorder is
weak in the long length scale model with cutoff lendttihen
we expect quasi-long-range ordé,14,15 in both models.

If the disorder is strong, then only short-range order is pos-
sible[3,14,15. At strong disorder the perturbative RG analy-
8is is no longer valid and quasi-long-range order is impos-
ible. The condition of weak disorder means two things:
he effective disorder at the pore size scéis weak;(2) the
renormalized disorder is weak at long length scales, é&e.,
=4-d is small. The critical value of the disorder strength is
nonuniversal and depends on microscopic details.

In conclusion, we have found the dependence of the ef-
fective disorder in random fractal media on the pore size and
the fractal dimensions. The dependence is nontrivial and the
effective disorder can grow as the density of the porous me-
dia decreases. Similar conclusions in the case of helium in
aerogels were reached by Falikov and BefjiZ#. This sug-

[3,22. Due to the symmetry of the problem we need a peri-gests that instead of changing the pore size, a more effective

odic solution with period Z. At the interval 0< ¢ <27 itis
given by the equation F(¢)=2m"¢[1/36—(p/2m)3(1
- ¢/2m)?]/9. This solution corresponds &> 0. Otherwise

way to control the disorder strength is to use mixtures of
nematics with other substances whose molecules could
“shield” the nematic from the random surface. This would

F—0. The temperature goes to zero at the fixed pointdecrease the liquid-crystal interaction with the porous media.

We can now calculate the correlation function
G=[(r) - ¢(rp)*=2f d|p*(@)[[1-cosq-(r,~r,)]/ (2m)".

We also showed that at certain conditions the porous media
can destroy long-range order inside a pore.

At each step of the RG procedure it is sufficient to use the We thank Richard Stratt for a useful discussion. This work

quadratic in¢g part of the renormalized replica Hamiltonian
to calculate the contribution corresponding to
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Grant No. DMR-0131573.
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